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3 INFN, Sezione di Milano, Università di Milano, Via Celoria 16, 20133 Milano, Italy

Received 8 July 1999

Abstract. We simulate the evolution of a protein-like sequence subject to point mutations, imposing con-
servation of the ground state, thermodynamic stability and fast folding. Our model is aimed at describing
neutral evolution of natural proteins. We use a cubic lattice model of the protein structure and test the
neutrality conditions by extensive Monte Carlo simulations. We observe that sequence space is traversed
by neutral networks, i.e. sets of sequences with the same fold connected by point mutations. Typical pairs
of sequences on a neutral network are nearly as different as randomly chosen sequences. The fraction of
neutral neighbors has strong sequence to sequence variations, which influence the rate of neutral evolution.
In this paper we study the thermodynamic stability of different protein sequences. We relate the high
variability of the fraction of neutral mutations to the complex energy landscape within a neutral network,
arguing that valleys in this landscape are associated to high values of the neutral mutation rate. We find
that when a point mutation produces a sequence with a new ground state, this is likely to have a low
stability. Thus we tentatively conjecture that neutral networks of different structures are typically well
separated in sequence space. This result indicates that changing significantly a protein structure through
a biologically acceptable chain of point mutations is a rare, although possible, event.

PACS. 87.15.Aa Theory and modeling; computer simulation – 87.23.Kg Dynamics of evolution

1 Introduction

Almost unmistakingly, naturally occurring proteins with
sequence similarity larger than 40% adopt similar folds [1].
Since natural proteins with homologous sequences descend
from a common ancestor, this observation indicates that
protein structures are significantly conserved in evolu-
tion. Indeed, several proteins with different functions show
a remarkable structural similarity of evolutionary origin
even if their sequences can not anymore be recognized
as related [2,3]. A recent study on the Protein Data
Bank (PDB) showed that the typical sequence similar-
ity between proteins with the same fold is about 8.5% [4],
only slightly larger than for a random pair of sequences [5].
In this set also proteins with common ancestors are likely
to exist. These observations cue to the fact that during
evolution, there is a strong memory for the structure but
only a very loose memory for the sequence.

The neutral theory of molecular evolution, proposed
in 1968 by Kimura [6] and, independently, by Jukes
and King [7], is well consistent with these observations.
Kimura suggested that most amino acid substitutions
in protein sequences are selectively neutral, i.e. indistin-
guishable from the wild type from the phenotypic point of
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view, and are fixed by chance in biological populations [6].
This hypothesis has been heatedly debated in the genetic
literature [8,9]. Strictly speaking, conservation of the fold
and neutral evolution are not equivalent, since neutrality
deals with the activity of the protein, concentrated in its
active site, more than with its structure. Moreover drastic
changes in the environment can modify the selective value
of protein structures. However, since our model does not
represent biological activity, we assume in the following
neutrality to be synonymous of structure conservation.

In the last decade, the possible occurrence of neutral
evolution has been revealed by a series of computational
and analytic studies of the sequence to secondary struc-
ture relationship for RNA molecules [10]. An exponen-
tially large number of sequences correspond on average to
a single structure, and the distribution of the number of
sequences per structure is quite broad (following a power
law), with the most common structures forming connected
neutral networks which percolate sequence space.

For proteins, the sequence to structure relationship is
much more difficult to study than for RNA. Shakhnovich
and Gutin [11], using the random heteropolymer model,
argued that the probability that a point mutation is neu-
tral (i.e. it does not alter the native state) is non vanish-
ing even for very long sequences. In the same spirit, Tiana
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et al. [12] considered a cubic lattice model and a sequence
with 36 residues, optimized in such a way that its ground
state coincides with a target structure and is very sta-
ble [13], and estimated that 70% of the point mutations are
neutral. Bornberg-Bauer [14] studied a two-dimensional
HP model with only two residue types and chain length
N = 18 by using exact enumeration. He found, in analogy
with the RNA case, that the distribution of the number of
sequences per structure is very broad, but sequences cor-
responding to the same structure are clustered in small
regions of sequence space.

We simulate the evolution of a protein sequence sub-
ject to structure conservation. Mutations that change the
protein’s native structure, identified with the ground state
of the model, are considered lethal and are rejected. In this
way, our sequence follows an evolutionary trajectory on a
neutral network, i.e. a set of sequences sharing the same
fold and connected by point mutations. While the struc-
ture (fold) is conserved, the sequence changes as new mu-
tations are accepted, and after a sufficient number of steps
along the evolutionary trajectory have been performed,
the sequence behaves essentially as a random one with
respect to the original one [15].

It is important, however, to impose not only the con-
dition that the native state is conserved but also that its
stability remains high and the folding time remains low.
These conditions are not only biologically relevant, but
also help the model protein to diffuse in sequence space.

We use in this study a lattice representation of pro-
tein conformations, because only in this way the ground
state and its thermodynamic stability can be reliably de-
termined, but we believe that our simplified model repro-
duces the generic features of the evolution of real protein
sequences.

Support to our results comes from a recent study by
Babajide and coworkers [16], who found evidence for the
presence of neutral networks in protein sequence space.
Their work is similar in spirit to the present one, but
rather different methodologically. Real protein structures
were represented through the Cα and Cβ coordinates
taken from the PDB, and an approximate criterion of fold
recognition based on the Z score [17] was used. Further
support also comes from the work of Govindarajan and
Goldstein [18,19], who introduced the “foldability” land-
scape in order to describe molecular evolution. In the lan-
guage of Govindarajan and Goldstein the foldability of a
protein represents its fitness for survival during evolution
and it is related to the stability and to the kinetic acces-
sibility of the native state. Govindarajan and Goldstein
also found that their evolutionary dynamics in sequence
space was confined inside “neutral networks”.

The main result of our paper, namely the fact that the
fraction of neutral neighbors strongly fluctuates inside the
neutral network, and that these fluctuations can be related
to the foldability landscape, should also be put in relation
with the recent preprint by Tiana et al. [20] where it is
shown that the energy of a target structure has a complex
landscape with valleys and barriers in sequence space. The
present work supports such a picture by using the same

protein model but employing rather different methods of
investigation.

We already presented some results on neutral networks
in reference [15]. Here we focus our attention on the issue
of the stability of the native state, relating it to the char-
acteristics of the evolution. In Section 2, we describe our
model protein and our protocol to simulate neutral evolu-
tion. In Section 3 we summarize our previous results. In
Section 4 we describe the properties of the sequences gen-
erated, dividing them in four classes. This section focuses
on the relation between thermodynamic stability and evo-
lutionary dynamics. Section 5 presents an overall discus-
sion, relating our results to biological observations.

2 A simple model of protein evolution

In this section we define the lattice model used to rep-
resent protein structure and the algorithm introduced to
simulate evolution in sequence space.

2.1 Lattice model of protein structure

To investigate the correspondence between sequences and
structures we use a lattice model with twenty amino acid
types. We consider sequences of length N = 36, denoted
by the symbol S = {s1, . . . , sN}, where si belongs to a
twenty-letter alphabet. Configurations are represented by
self avoiding walks on the simple cubic lattice, where each
occupied site represents an amino acid. An energy E(S, C)
is assigned to configuration C of sequence S according to
the rule:

E(S, C) =
1,N∑
i<j

CijU(si, sj), (1)

where U(a, b) is a 20×20 symmetric interaction matrix ex-
pressing the contact interactions of amino acids of species
a and b. We use an interaction matrix U(a, b) derived from
the Miyazawa-Jernigan interaction matrix [21]. The ma-
trix C = {Cij} = f(C), called the contact map of config-
uration C, has elements Cij equal to one if residues i and
j are nearest neighbors on the lattice but not along the
chain and zero otherwise. The similarity between contact
maps is measured through the overlap q(C,C′), defined as

q(C,C′) =
1
N∗c

∑
i<j

CijC
′
ij , (2)

where N∗c is the maximal between Nc and N ′c, the num-
ber of contacts respectively of two contact maps C and
C′, and Nc =

∑
j>i Cij . With this definition, two maps

are identical if and only if q = 1. Note that this does not
imply in general identity of configurations. Nevertheless,
we use the overlap as a measure of similarity in config-
uration space because structures with the same contact
map are degenerate in energy and for compact structures,
only small conformational fluctuations are allowed when
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Fig. 1. The “native state” of the model protein. The initial
residue is the one in the bottom left corner.

the entire set of contacts is specified. Moreover, such struc-
tural fluctuations might play an important role in protein
functionality [22].

The native structure of sequence S is identified with
the ground state of the model if it is thermodynamically
stable. We evaluate stability by measuring the average
overlap 〈q〉 between the ground state and the Boltzmann
ensemble of structures:

〈q〉 =
1
Z

∑
C
q(C0, f(C))e−E(C,S)/T , (3)

where C0 is the contact map of the ground state, f(C) is
the contact map of configuration C and Z is the partition
function. This quantity is close to one if all the low energy
structures are quite similar to the native state. In this case
the energy landscape of the model is well correlated, and
the sequence is also expected to be a good folder.

We consider the target contact map C∗ represented in
Figure 1. It has Nc = 40 contacts, the maximal number of
contacts possible for a chain of length N = 36. In this case
the contact map defines uniquely the configuration of the
system. The contact map C∗ was studied by Shakhnovich
and coworkers in a computer experiment of inverse fold-
ing [13]. They designed a sequence with ground state on
C∗ using the procedure of reference [23], and showed that
S∗ has good properties of kinetic foldability and thermo-
dynamic stability at the temperature where the folding is
fastest. The lower part of the energy landscape of this se-
quence is remarkably smooth: all the structures with low
energy have a high overlap q with the ground state. The
lowest energy of configurations with a fixed value of q de-
creases regularly as q approaches one. This correlated en-
ergy landscape, reminiscent of the “funnel” paradigm [24],
is the reason of the good folding properties of the sequence,
which is very different from a random sequence. In [12]

it was shown that the same sequence is also very stable
against mutations. It was estimated that about 70% of the
point mutations performed on S∗ result in new sequences
with exactly the same ground state and good folding prop-
erties. Thus energy minimization makes C∗ stable not only
in structure space, but also in sequence space.

We note that C∗ is an atypical structure for the in-
teraction parameters that we choose: since U(a, b) has av-
erage value zero and variance 0.3, one would expect open
structures to be energetically favored. Indeed, typical ran-
dom sequences with N = 36 and Gaussian contact inter-
actions whose average vanishes have a ground state with
approximately 29–33 contacts [25], being thus less than
maximally compact.

2.2 Sequence space

In this study we consider only point mutations, thus all
sequences have the same length N = 36 and the metric in
sequence space is given by the Hamming distance,

D(S,S′) =
N∑
i=1

[1− δ(si, s′i)] , (4)

where δ is the Kronecker symbol and si takes 20 different
values, one for each amino acid. A measure of sequence
similarity is then given by the overlap Q(S,S′),

Q(S,S′) =
1
N

N∑
i=1

δ(si, s′i), (5)

which is equal to one minus the normalized Hamming
distance.

We introduce also the distance DHP(S,S′) and the
overlap QHP(S,S′) to measure differences in hydrophobic-
ity. These are defined by transforming every sequence into
a sequence of binary symbols, either H or P, according
to the hydrophobicity of the residue. We consider 8 hy-
drophobic amino-acids and 12 polar ones. The definitions
of DHP and QHP are analogous to those of D and Q, where
now si can take only two values.

2.3 Evolutionary process

Our protein sequence evolves through point mutations
subject to conservation of the target contact map C∗, rep-
resenting the biologically active native structure [26]. We
impose this condition by simulating the following iterative
procedure:

1. At t = 0 we start from S(0) = S∗, which has C∗ as its
“native state”.

2. At time t we mutate at random one amino acid in
S(t− 1), producing a new sequence S′(t).

3. We submit the new sequence to selection according to
the criteria specified below. If the sequence is accepted
then S(t) = S′(t), otherwise we restore S(t) = S(t− 1).
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The selection step is governed by the following three
conditions.

(i) Conservation of the ground state. The ground state C
of S′(t) must have an overlap with C∗ equal or larger
than a given “phenotypic threshold” qthr.

q(C∗,C) > qthr. (6)

In our calculations we imposed strict conservation of
the native state by setting qthr = 1.

(ii) Thermodynamic stability. We define thermodynamic
stability through the condition

〈q(C∗,C)〉 > 〈q〉thr, (7)

where 〈·〉 represents a Boltzmann average at the tem-
perature T of the simulation and 〈q〉thr is a fixed pa-
rameter. This condition implies that all the thermo-
dynamically relevant states are very similar to the
target state.

(iii) Kinetic accessibility. The structure C∗ must be
reached in a limited number of steps of our Monte
Carlo algorithm, in at least two independent at-
tempts.

For the test of the sequences we used the PERM
method [27,28], a Monte Carlo algorithm particularly
suited for finding the ground state of lattice polymers.
Note that there is no bias towards C∗ in our Monte Carlo
algorithm, i.e. it has the same a priori probability of be-
ing visited as any other possible structure. We remark
that other schemes of simulations are also suitable to the
same effect, as e.g. the Monte Carlo algorithm used in
reference [29]. Such Monte Carlo method with moves in
configuration space is more suitable than PERM to esti-
mate folding times. However, due to computational limi-
tations, we did not try to measure accurately the folding
time, thus we adopted the PERM method, which is faster
for the task that is interesting for us.

The test of a new sequence S is divided into three
phases:

– We discard S if after m iterations C∗ is not reached or
if other structures of energy lower than C∗ are found.

– Otherwise we continue to run the algorithm for an-
other m iterations and discard S if we find structures
of energy lower than C∗.

– If S passed the first two phases, we run again and inde-
pendently the MC algorithm for a time 2m and accept
S if also this time C∗ is found as the lowest energy
structure.

Thus for each accepted sequence we run the algorithm
for 4m steps, with m = 124 000. We never found in the
second independent run of the MC algorithm a structure
with lower energy than the putative ground-state C∗ found
in the first run. This fact encourages us to believe that
the algorithm was effective in finding the ground state.
Another support to this conclusion comes from the fact
that, as it will be discussed later in more detail, all of the
selected sequences have a remarkably correlated energy

landscape, which makes the task of finding the ground
state easier.

On the other hand, whenever the sequence was re-
jected, we are less sure that we were able to determine
its ground state. The difference is due to two reasons:
first, we investigate rejected sequences on the average for
a shorter time. Second, rejected sequences have typically
a less correlated energy landscape, so that the determina-
tion of the ground state should be more difficult. Neverthe-
less, we shall present in Section 4 also data about rejected
sequences, since they are interesting and refer to a very
large number of sequences, even if they are individually
not completely reliable.

The three conditions for the acceptance of a mutation
enforce the conservation of the fold of the protein. This is
similar to neutral evolution where the biological activity of
the mutated sequence does not vary. Nevertheless, conser-
vation of the fold is not a necessary condition for selective
neutrality in real proteins, although a very high degree
of conservation is usually observed, and it is not even a
sufficient one, since – in the case of enzymes – the active
site has also to be conserved and the environment has to
remain reasonably stable. Thus our model represents the
neutral evolution of the part of the chain not involved in
chemical activity, in a stable chemical environment. De-
spite its simplifications, we believe that our model cap-
tures important features of structural constraints in the
neutral evolution of proteins.

3 Neutral networks

In this section we summarize results regarding the diffu-
sion in sequence space under our model of neutral evolu-
tion. More details have been given in reference [15].

3.1 Hamming distance

An interesting result of our simulation is that sequences
originated from the same common ancestor diverge so
much that their similarity is almost as low as for a random
pair of sequences while their structures remain unchanged.
Starting from the same sequence we generated eight real-
izations of neutral evolution, simulating the phylogenetic
radiation of eight species from a common ancestor. We
use the following values of the selection parameters: phe-
notypic threshold qthr = 1, corresponding to exact conser-
vation of the ground state, stability threshold 〈q〉thr = 0.90
at a temperature T = 0.16 chosen so that the folding of
the initial sequence S∗ is fastest with our Monte Carlo
algorithm.

The average Hamming distance between the final
points of the eight evolutionary trajectories is D = 30.2,
only slightly smaller than the random value Dran = 34.2
(see Fig. 2). However, this quantity had not yet reached
a stationary value when the simulations were interrupted,
thus we can not exclude that the long time behavior coin-
cides with Dran. An indication in this sense is the fact that
the maximum distance between sequences in two different
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Fig. 2. Histograms of the Hamming distances between the end
points of eight independent trajectories using the full 20 amino-
acid alphabet (white) and the reduced HP alphabet (black).
The vertical dashed lines represent the average values for ran-
dom pairs of sequences.

trajectories is D = 35. All the residues in the original se-
quence could be substituted at least twice, but some are
more difficult to change. We define the degree of conser-
vation, or rigidity, of residues at the i th position in the
sequence as follows:

Ri =
∑
a

P 2
i (a), (8)

where Pi(a) is the probability to find the amino-acid a
at position i. Pi(a) is estimated from the end points of
the eight neutral paths generated. Ri = 1 if the amino-
acid at position i is never changed, while Ri ≈ 1/8 if it is
completely random. We found that several positions have
rigidity compatible with the random value, and no posi-
tion has Ri = 1. As one would expect, the most conserved
positions are the two in the interior of the structure (see
Fig. 2).

The same results hold for the HP representation in
which hydrophobic (H) and polar (P) amino acids are
grouped together so that si can assume only two val-
ues. The average value of the distance is in this case
DHP = 16.3, not far from the random value Dran

HP = 17.3,
and the variance is VHP = 6.0, compatible with VHP =
DHP(1 −DHP)/N . It is at first sight surprising that also
the distance DHP is close to that expected for random se-
quences. This is in part an effect of the short length of our
sequences, since only two residues are in the interior of
the structure, while all other ones are at the surface. It is
interesting to note, however, that also the two residues in
the interior of C∗ have rigidity Ri < 1, even when the two
letter HP representation is used. The distinction between
polar and hydrophobic residues is based only on the in-
teraction matrix that we use, in which also polar residues
can have attractive interactions. It is interesting to note
that a recent study of real protein structures [30] found

a correlation between amino acids buried in the core and
evolutionary conserved ones, consistently with our results.

3.2 Neutral mutation rate

For a given sequence S of N amino acids, we define the
neutral mutation rate x(S) as the fraction of acceptable
non-synonymous mutations

x(S) =
1

20N

N∑
i=1

1,20∑
α6=si

χαi(S), (9)

where χαi(S) equals one if assigning the amino acid of
species α at position i on the sequence S does not change
the native state, and zero otherwise. Non-synonymous mu-
tations are those for which an amino acid is not replaced
by itself.

The simplest measure of the neutral mutation rate is
obtained by computing the frequency of neutral mutations
over all the non-synonymous mutations proposed. In this
way we found x ≈ 0.05 (the overline represents an aver-
age over the mutational process). However, this quantity
alone is not enough to characterize x(S), which fluctuates
strongly in sequence space. For instance, it was estimated
by one of us and coworkers [12] that x(S∗) ≈ 0.7, where
S∗ is the starting point of our evolutionary trajectories.

We measured indirectly the distribution of x(S) in se-
quence space from the distribution of the “trapping” time
τt(S) that a trajectory spends on sequence S. The average
value of the trapping time is inversely proportional to the
neutral mutation rate:

τt(S) =
1

x(S)
, (10)

where the bar denotes average over the different muta-
tions. The distribution of τ at fixed x is a geometric one,
Px(τ) = x(1 − x)τ−1, so that, averaging over the neutral
set, we get

[P (τ)] =
∫ 1

0

dx p(x)
(

x

1− x

)
(1− x)τ , (11)

where [·] denotes an average over sequences belonging to
the neutral network (in this argument we neglect the er-
ror in evaluating whether a sequence belongs to the neu-
tral set: in particular, the conditions of fast folding and of
thermodynamic stability are subject to considerable eval-
uation errors).

The distribution of τt is broader than an exponential
one (Fig. 3), thus, even if we can not invert equation (11),
we expect that the distribution of the neutral mutation
rate x is also broader than exponential.

The values of τt for neighboring sequences are rather
correlated, but the correlation seems to vanish after few
steps in sequence space (data not shown).
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Fig. 3. Distribution of the trapping time τt.

3.3 Genetic drift and population genetics

In Kimura’s neutral theory [6] it is assumed that the frac-
tion of neutral mutations x(S) does not depend on the
sequence. With this hypothesis, the time evolution of the
Hamming distance D(t) between the starting sequence
S(0) and the present sequence S(t) is given in our model by

D(t)/N ≈
(

1− 1
20

)
[1− exp(−xt/N)] , (12)

where the time t represents the number of mutational
events. However, this hypothesis is contradicted by our
results, which show that the relaxation of the distance is
not exponential. This fact is due to the large fluctuations
of the neutral mutation rate along the neutral network.

This qualitative result can be interesting for the un-
derstanding of protein sequence evolution. A key issue in
the theory of molecular evolution is the following: Is the
rate at which amino acids are substituted in protein se-
quence constant on different branches of the phylogenetic
tree? The constancy of the substitution rates was proposed
by Zuckerkandl and Pauling in their pioneering study of
molecular evolution as the molecular clock hypothesis [31].
This hypothesis has been questioned recently [8,9], even
if it seems to be at least approximately valid for several
proteins.

Kimura’s theory predicts that neutral substitutions oc-
cur at a rate r = µx which is the product of the bare
mutation rate µ times the fraction x of neutral mutations.
This rate is independent of the size of the population. The
value x characterizes the substitution rate of a particu-
lar protein but does not vary during evolution. Mutations
occurring in a geological time T are thought to follow a
Poissonian statistics with average value µT , so that the
number of substitutions is predicted to have Poissonian
statistic with average value 〈nS〉 = µTx. This has the
important consequence that the fluctuations of the sub-
stitution process in different species should increase only
as
√
T . More precisely, the ratio R(T ) between the vari-

ance and the average value of the number of substitutions

should be identically equal to one. This strong prediction
was first tested by Kimura [6] with the conclusion that de-
viations from the Poissonian statistics are small. However,
more recently Gillespie repeated the test for a larger num-
ber of proteins, finding that for most of them the value
of R(T ) is much larger than one. He thus argued that
the hypothesis that most mutations are neutral has to be
rejected.

Our results provide an alternative explanation: the
strong fluctuations of the substitution process can be at-
tributed to the fluctuations of the neutral mutation rate
in sequence space, even in the absence of any selective
pressure. To test this hypothesis, we assume, as above,
that the number mk(T ) of attempted mutation events in
a time T during trajectory k is a Poissonian variable of
average value µT . In the present study, k = 1, ...8 is the
label of the evolutionary trajectories. Then for every tra-
jectory k we count the number nk(T ) of mutations ac-
cepted over mk(T ) steps of our evolutionary algorithm.
This number is then interpreted as the number of substi-
tutions in “species” k. We can thus compute the variance
and the average value of this variable over the eight tra-
jectories. The ratio between them gives an estimate of
the dispersion ratio R(T ). This is always larger than one,
contradicting the Poissonian hypothesis. Moreover, R(T )
is found to be an increasing function of T , so that it is no
longer true that the fluctuations grow with time as

√
T .

Since our model takes into account only neutral and
lethal mutations, without considering either advantageous
mutations or slightly deleterious ones, we conclude that
the violation of Poissonian statistics is not a decisive proof
against the validity of the neutral hypothesis.

4 Properties of the sequences

We classify the nearly 12 000 sequences generated by our
evolutionary algorithm in four classes, with the reminder
that the identification of the ground state is only tentative
for rejected sequences, as already discussed.

1. Selected sequences, belonging to the neutral network.
Their number is a fraction f = 0.050 of the total set.

2. Unstable sequences, f = 0.172. Their lowest en-
ergy state coincides with C∗, but the stability con-
dition is not fulfilled. The rejection was made in most
cases already after the first MC run, if the condition
〈q(C,C∗)〉 > 0.75 was not fulfilled, otherwise the se-
quence was studied in another MC run.

3. Slow folding sequences, f = 0.472. For such sequences,
no structure with energy lower than E(C∗,S) was
found, but the MC algorithm did not reach the tar-
get structure C∗. In some cases (f = 0.061) C∗ was
reached in the first MC run but not in the second one,
while in most cases the rejection was made already
after the first run.

4. Structurally mutated sequences, f = 0.306. For such
sequences the lowest energy structure C0, has lower
energy than the target structure:

E(C0,S) < E(C∗,S). (13)
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Fig. 4. Distribution of the Z score for different classes of
sequences.

Before describing separately the properties of these classes
of sequences, we show that the value of the Z score is
able to distinguish statistically the different classes. The Z
score [17] is used to evaluate the match between a sequence
S and a structure C∗ taken from a pool of alternative
structures. It is defined as

Z(C∗,S) =
E(C∗,S)− 〈E(C,S)〉√
〈E2(C,S)〉 − 〈E(C,S)〉2

, (14)

where the brackets denote average with respect to the en-
semble of alternative structures at high temperature. The
more negative Z is, the better is the match between the
sequence S and the structure C∗ and the more stable is
the structure C∗, provided that it is really the lowest en-
ergy structure. This measure is often used in computer
experiments of fold recognition [16,17].

Following Mirny and Shakhnovich [32], we use a sim-
plified measure of the Z score, considering as alternative
structures only maximally compact structures and ap-
proximating their average energy and their variance with,
respectively, the average energy and the variance of the
set of all possible contacts (we take into account the fact
that in the simple cubic lattice the only possible contacts
are those between monomers of different parity). More
precisely, our definition is

Z ′(C∗,S) =
E(C∗,S)−Ncmax [U(Si, Sj)]

Ncmax

√
[U2(Si, Sj)]− [U(Si, Sj)]

2
, (15)

where

U(Si, Sj) =

∑
ij PijU(Si, Sj)∑

ij Pij
, (16)

Pij is one if a contact between amino acids i and j is pos-
sible in some configurations, zero otherwise and Ncmax is
the number of contacts for maximally compact structures,
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Fig. 5. Fraction of unstable, slow folding and mutated se-
quences that would be selected with a criterion based on a
threshold value of the Z score, Zc. Solid line: fraction of se-
quences selected by our algorithm that would be rejected with
the same criterion.

Ncmax = 40 for N = 36 on the cubic lattice. Z ′ is a good
approximation to the Z score and it is very easy to com-
pute numerically, without the need for a simulation at a
high temperature.

We plot in Figure 4 the distribution of the Z score for
the four classes of sequences. For the structurally mutated
sequences we evaluated both the Z score of the target
structure C∗ and the Z score of the lowest energy structure
found, C0. Note that the starting sequence S(0) has the
lowest value of the Z score, i.e. Z = −1.22.

The ranking of the Z score for different classes is as
expected on the basis of their stability. The most nega-
tive values of Z are proper of selected sequences, which
are most stable. Next come slow folding and unstable se-
quences. The Z score of mutated ground states, Z(C0,S),
are less negative. Last in this rank of stability comes the
Z(C∗,S) for the structurally mutated sequences. In this
case, we are sure that C∗ is not the ground state of the
sequence.

These results confirm that the evaluation of the Z score
is an efficient criterion to decide whether C∗ is the ground
state of a sequence S. Nevertheless, the fact that the dis-
tributions of the Z score relative to different classes have
large overlaps should make one worry that the Z score is
not a precise criterion. In Figure 5 we report the results
that we would get using a threshold value of Z, Zc, as a
criterion for fold recognition, instead of studying the se-
quences with Monte Carlo simulations. The dotted line
represents the fraction of sequences that are unstable or
slow folders according to our criterion and would be ac-
cepted with a criterion based on the Z score. This goes
from less than 60% for the most stringent threshold to a
plateau value of about 80%. We can say very little about
this class of sequences. It includes sequences that are really
of lower quality than selected sequences, sequences that
are of the same quality but were not selected because of
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the uncertainties of the selection procedure and sequences
which do not fold to the target state. The dashed line rep-
resents sequences whose ground state is surely different
from the target one. Their fraction increases from zero
to about 20% as the threshold becomes less stringent.
Finally, the solid line represents sequences that would
be selected with our criterion but not with the Z score
criterion, as a fraction of the total number of selected
sequences. Our results indicate that a good choice for the
threshold could be Zc ≈ −1.07: 14% of the sequences se-
lected with this criterion would also be selected with our
criterion, 80.5% would be sequences that do not fulfill the
stability or fast folding conditions and 5.5% would be se-
quences which have certainly a different ground state, but
probably similar to the target one, since the Z score of mu-
tated sequences is correlated to the similarity between the
new ground state and the target state (see below). About
29% of the sequences that our criterion selects would be
discarded with the Z score criterion. This number becomes
much larger if the threshold is made more stringent. Thus,
the criterion based on Z accepts most sequences that we
reject and rejects a large fraction of those that we select.

The distribution for the slow folding class is quite sim-
ilar to that of the unstable class. This is not surprising,
since it is well-known that stability and fast folding are
correlated in lattice heteropolymer models [33,34]. In par-
ticular, stability as we defined it requires a correlated en-
ergy landscape, which is considered a property of fast fold-
ing sequences. Thus these results encourage us in believing
that the conditions we imposed and the algorithm to ver-
ify them were appropriate.

Interestingly, the distribution relative to Z(C0,S) lies
to the right of the other ones, indicating that the stability
of the structurally mutated ground states is rather low.
This is not unexpected. In fact, structurally mutated se-
quences are only one point mutation apart from selected
sequences, thus C∗ should still have a low energy and
should decreases the stability of C0. We shall comment
further on this point in the conclusions.

The Z score correlates well to the native overlap
〈q(C,C∗)〉 that we assumed as a measure of thermody-
namic stability (Fig. 6) for unstable sequences (correla-
tion coefficient r = −0.48) and for mutated sequences
(this is due to the fact that the overlap between the mu-
tated ground state and the native state correlates to the
Z score). No correlation is visible for selected sequences,
which always have 〈q(C,C∗)〉 > 0.9. For unfolded se-
quences the measure of 〈q(C,C∗)〉 is not possible (see
Fig. 6).

4.1 Selected sequences

With our criterion we accepted 566 sequences in six evo-
lutive trajectories. Such sequences are both fast folding
and thermodynamically stable. These properties are not
typical of random sequences [23].

For selected sequences there is a significant correlation
between the energy E of a conformation and its overlap q
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Fig. 6. Average value of the native overlap as a function of
the Z score Z(C).
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Fig. 7. Correlations between the energy and the similarity
with the ground state for the 200 lowest energy structures of
three selected sequences.

with the native state. In Figure 7 we represent the 500 low-
est energy configurations of three different sequences as
points in the (E, q) plane. For every sequence, all points
fulfill the inequality

1−E(C,S)/E(C∗,S) ≥ α(S) (1− q(C,C∗)) . (17)

The adimensional parameter α(S) is related to the en-
ergy gap of the ground state C∗ of sequence S, as defined
by Shakhnovich and coworkers [34]. However, it charac-
terizes more precisely the smoothness of the energy land-
scape. For the initial sequence we find α(S0) = 0.23. We
did not measure α(S) for all selected sequences, but it ap-
pears from few examples that its value does not decrease
during the evolution of the protein. It is not surprising
that selected sequences exhibit a correlated energy land-
scape, since the condition of thermodynamic stability that
we impose rules out sequences with misfolded structures
of low energy. Moreover, our selected sequences are fast
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Fig. 8. Z score of sequences in the neutral network as a func-
tion of the number of steps along the network, starting from
S∗, for two evolutionary trajectories.

folders, and one should expect that such sequences have
a correlated energy landscape, since the relation between
thermodynamic stability, fast folding and smoothness of
the energy landscape has long been discussed [23,24]. Fur-
thermore, it has been found that models which cannot give
rise to good folding sequences present weak correlations
between q and E [28,35].

Consistently, it appears from our data that the fold-
ing time is correlated to the stability (it has a negative
correlation with the Z score and positive with the native
overlap), but we are not able to quantify this effect, since
our measure of the folding time, based only on two simu-
lations, is too imprecise.

It is also interesting that for several sequences the en-
ergy E(C∗,S) is lower than for the starting sequence S∗,
although this has been obtained by minimizing the energy
E(C∗,S) in sequence space. The reason for this is that
the minimization method requires that the composition
of the sequence is kept fixed, while we do not impose this
condition. However, the Z score reaches its lowest value
Z = −1.22 for the starting sequence S∗.

We observe that the Z score of the target state,
Z(C∗,S), defines a complex landscape in sequence space,
with valleys separated by barriers. This result is illustrated
in Figure 8, where we show the Z score of sequences in
the neutral network as a function of the number of steps l
along the network, starting from S∗.

The roughness of the energy landscape is consistent
with the results reported in a recent preprint by Tiana
et al. [20], who sampled the energy landscape in sequence
space for a fixed structure using Monte Carlo simulations.
The authors of [20] observed a hierarchy of clusters and
superclusters of low energy sequences, with superclusters
characterized by few fixed amino acids in key positions and
not connected by neutral paths. This conclusion might at
first seem at odd with the fact that we found connected
neutral paths extended in sequence space, but there should

be no contradiction between the present work and the re-
sults of reference [20], since they deal with different ques-
tions. We studied a single neutral network asking whether
it is possible to find in it pairs of sequences at any dis-
tance, while Tiana et al. [20] ask whether it is possible to
find non homologous proteins which are in disconnected
neutral networks and still fold to the same structure. It is
possible that both answers are positive and that several
extended but disconnected neutral networks exist for a
given protein structure. Such a picture, if correct, implies
that non homologous proteins sharing the same fold may
have been originated either through convergent evolution,
possibly on disconnected neutral networks, or through di-
vergent evolution from a common anchestor on a single
neutral network, but it is very difficult or even impossible
to decide between these two possibilities on the basis of
the sequence alone.

On the other hand, we should note that the definition
of neutral path in our work is different than the one used
in [20]. In fact, while in [20] is assumed that a path in
sequence space is neutral if all sequences belonging to it
have Z score lower than a predetermined threshold, we ac-
cept only sequences for which we can show through Monte
Carlo simulations that the target structure is the ground
state, it is thermodynamically stable and easy to reach ki-
netically. The criterion adopted in [20] has the advantage
of being computationally very efficient and it correlates
well with our criterion. In several cases, however, the two
criteria give different answers, as it is shown in Figure 5,
and it is possible that networks which are disconnected ac-
cording to the Z score criterion are found to be connected
according to our criterion. Further study is necessary in
order to assess the relevance of such possibility.

It is rather interesting that the complex energy land-
scape in sequence space offers an explanation for the large
variations of the neutral mutation rate, x(S). Since a more
stable sequence can tolerate larger rearrangements with-
out changing its ground state, one can expect that the
fraction of neutral mutations from sequence S increases
with the stability of the sequence. This expectation is in
agreement with the results of reference [20], where the sta-
bility is measured by the Z score Z(C∗,S) and neutrality
of a mutation is recognized with a criterion based on the
Z score of the mutated sequence.

We study the correlation between the stability, mea-
sured either by the native overlap or by the Z score,
and the fraction of neutral neighbors x(S). Since we
did not measure x(S), we have to rely on the trapping
time τt spent by a trajectory on sequence S. This vari-
able is related to x(S) through the geometric distribution
Px(τ) = x(1−x)τ−1 of average value 1/x(S) (11). We thus
estimate the correlation coefficient between the Z score
and 1/x(S), using the relations [Z(S)/x(S)] ≈ [Z(S)τt(S)],
[1/x(S)] ≈ [τt(S)],

[
1/x(S)2

]
≈ 1/2

[
τ2
t (S) + τt(S)

]
, where

the square brackets indicate average on the neutral net-
work. This treatment neglects the fact that our criterion
is subject to some arbitrariness, since we can not mea-
sure with high precision the native overlap 〈q〉 and the
typical folding time upon which our criterion is founded.
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Fig. 9. Average value of τt for sequences of the neutral network
as a function of the Z score (upper panel) and of the average
native overlap (lower panel).

Thus, the correlation coefficient estimated in this way is
underestimated. We find a correlation coefficient r = 0.20
between the Z score and 1/x and r = −0.21 between the
native overlap and 1/x. Although the estimate is not ac-
curate, this study confirms the existence of correlations
between the stability of the native state and the neutral
mutation rate. We show the correlation between Z and τt
in Figure 9.

The previous observation can be the basis for a quanti-
tative explanation of the large fluctuations of the neutral
mutation rate in this model and possibly in real proteins.
It would be very interesting to investigate to which extent
such fluctuations are responsible for the observed patterns
of molecular evolution, which appear to be much more
irregular than predicted on the basis of the simple “ho-
mogeneous” neutral theory.

4.2 Unstable and slow folding sequences

To these two classes belong all sequences that were re-
jected although no structure of energy lower than C∗ was
found. We do not know for which fraction of these se-
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Fig. 10. Distribution of the number of contacts in the ground
state, Nc, for all of the generated sequences. The peaks at
high Nc are related to target-like structures. Insert: correlation
between the number of contacts and the overlap q0 between
target state and ground state.

quences the ground state coincides with C∗ and for which
the ground state is changed. For unstable sequences C∗ is
the lowest energy structure found and it is reached in at
least one of the two independent MC runs, but the sta-
bility condition is not fulfilled. The rejection was made
already in the first MC run if we found 〈q〉 > 0.75. Thus
we can not exclude that in the second run also the fast
folding condition would fail. For slow folding sequences
C∗ was not reached either in the first or in the second MC
run. The folding time for unstable sequences appears to
be correlated to the native overlap 〈q〉, even if our data
do not allow quantitative estimations.

4.3 Structurally mutated sequences

For sequences in this class we found putative ground states
with energy lower than that of the target structure. A
fraction f = 0.306 of the examined sequences belongs to
this class.

We first analyze the number N0
c of contacts in the

mutated ground state. The distribution P (N0
c ) is remi-

niscent of a bimodal distribution (see Fig. 10). As previ-
ously mentioned, the number of target contacts, N∗c = 40,
is the largest possible for a sequence length of N = 36
residues. The twin peaks at N0

c = 37 and at N0
c = 40 de-

rive from target-like ground states, while the constraints
of the lattice geometry are probably responsible for the
depression of the values of P (38) and P (39). The broad
peak at N0

c = 34 is close to the number of contacts ex-
pected for random sequences, although slightly higher. As
mentioned above, in the case of a random contact poten-
tial with the same mean and variance as the one that we
used and a Gaussian distribution, the number of contacts
in the ground states ranges typically from 29 to 33 [25].
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Fig. 11. Distribution of the overlap q(C∗,C) between the tar-
get structure C∗ and the ground-state of the sequences stud-
ied, C.

The number of contacts is higher than for random se-
quences because the “native” contacts of C∗ are advan-
tageous even in the structurally mutated sequences. This
is confirmed by the fact that there is a strong correlation
between the number of contacts N0

c and the overlap q0 be-
tween the new ground state and the target state C∗ The
correlation coefficient is r = 0.80. See insert in Figure 10.
The two quantities are also correlated to the energy E0

of the ground state: The more native-like the mutated
ground state is, the more compact it is and the lower is
its energy. The correlation coefficients are: r = −0.31 be-
tween q0 and E0, r = −0.32 (N0

c and E0), r = −0.54
(q0 and Z score) and r = −0.47 (N0

c and Z score). The
strongest correlation observed is that between q0 and the
Z score. The energy and the Z score are weekly correlated
(r = 0.36).

The distribution of q0 is also bimodal (see Fig. 11).
The peak at high q is due to native-like structures and
the broader peak at q = 0.3 is close to (but still signif-
icantly higher than) the typical overlap between random
structures, qran = 0.1 [25] for chains of length N = 36.

The overlap q0 between the ground state and the target
state is negatively correlated to the Z score. This is shown
in Figure 12, where all the structurally mutated sequences
are represented in a scatter plot in the plane (q0, Z). Only
structures which are very similar to the original native
state have a Z score in the range found for selected se-
quences. This result suggests that mutated ground states
dissimilar from the original one are in most cases not
stable enough to represent a new acceptable fold of the
model protein. In other words, neutral networks of unre-
lated structures may lay far apart in sequence space. This
feature of the model is consistent with the observation that
biological evolution conserves the native fold of proteins
even when their function changes substantially [2,3].
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Fig. 12. Scattering plot showing the Z score of the ground
state as a function of its overlap with the target state.

5 Discussion

We simulated evolution on neutral networks for a pro-
tein model with twenty amino acid types, contact energy
function and structures represented as self avoiding walks
on the simple cubic lattice. Stability of the ground state
is measured as the thermodynamic average of its overlap
with alternative structures.

Our simulations show that neutral networks are ex-
tended in sequence space: pairs of sequences on the neu-
tral network are almost as different as random sequences,
even if they have exactly the same fold. This observation is
consistent with what is known about protein evolution. In
our 36mer chains, residues in all positions could be sub-
stituted, even if the two positions in the core are much
more difficult to change, consistently with the results of
reference [30].

The neutral network that we studied turned out to be
rather irregular: the fraction x(S) of neutral mutations of
a sequence S has large variations in sequence space. The
value of x(S) is positively correlated with the stability
of the native state, evaluated either through the average
native overlap 〈q(C,C∗)〉 or through the Z score. This
appears very reasonable: The more stable is a sequence
to structure match, the less probable is that a mutation
destabilizes it. This is also in agreement with the results
of recent complementary studies [29,36]. It thus seems
that thermodynamic stability implies also stability with
respect to mutations.

The fluctuations of x(S) in sequence space are impor-
tant for the evolutionary dynamics. If x(S) is constant,
Kimura’s theory of neutral evolution predicts that the
overlap in sequence space relaxes exponentially to the
asymptotic value corresponding to random sequences, at
a rate independent of the size of the biological population
in which the evolution takes place. Moreover, the number
of substitutions in a protein sequence during an evolu-
tionary trajectory lasting T generations is predicted to
be a Poissonian variable of mean value µxT . In this case,
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the fluctuations of the value of this variable in different
species evolving for a time T should grow only as

√
T .

This result would sustain the molecular clock hypothesis,
according to which the substitution process can be used
as a clock to date speciation events. However, the molec-
ular clock hypothesis has been heatedly debated in the
last decade, and it has been shown that the number of
substitutions fluctuates much more than predicted in the
“homogeneous” neutral theory [8]. This deviation from the
prediction of Kimura’s theory has been interpreted as an
indication that in most cases protein evolution is not neu-
tral but adaptive. We suggest that the irregularity of pro-
tein evolution could be an intrinsic property of the energy
landscape of neutral networks of protein sequences. More
stringent statistical tests should be designed to distinguish
this situation from adaptive evolution, that undoubtedly
occurs in many cases.

Selected sequences have a rather correlated energy
landscape, which yields short folding times and high ther-
modynamic stability. The native overlap that we use as a
measure of thermodynamic stability correlates well with
the Z score but it gives more information on the absence
of states of low energy unrelated to the native state and
favors a more correlated energy landscape.

Sequences whose ground state coincides with the na-
tive state may be discarded either due to the lack of ther-
modynamic stability or because they fold too slowly. Both
classes of sequences have similar properties, since stability
and folding time are related quantities.

For about 30% of the attempted mutations the result-
ing sequence has a ground state different than the original
one. The overlap q0 of this new ground state with the tar-
get state has a bimodal distribution, but only structures
very similar to the target one appear to fulfill our crite-
rion of thermodynamic stability. This is not surprising,
since the target structure must conserve a low energy in
the mutated sequence, so that it is able to destabilize the
new ground state. Therefore, it seems that contacts be-
tween neutral networks of unrelated structures are very
rare, if a stability condition is required. A similar conclu-
sion has been suggested in a numerical study of the two
dimensional HP model [14].

An implication of this result is that it is difficult
to switch from a structure to a different one through
point mutations corresponding to thermodynamically sta-
ble proteins. This could explain why evolution changes so
rarely the fold of a protein, while it is possible to engineer
protein sequences with as much as 60% similarity with a
natural protein and completely different fold.

We studied a model which has the advantage of being
reliably computable, but at the price of sacrificing possibly
important ingredients. We discuss here the ones that we
judge the most serious:

1. We use a simple lattice model. This choice was made
due to the necessity of identifying the native state of
each generated sequence, and this is feasible only for
lattice models. Lattice models, although often criti-
cized [37], have been recognized to capture some of the
most relevant thermodynamic features of the folding

process [38], such as the existence of a unique ground
state and the cooperativity of the transition. However,
they do not capture essential features of real proteins
as for instance the existence of secondary structures.

2. We simulated the evolution of only one target struc-
ture. It would be interesting to see how our results
change by changing the structure, and which proper-
ties of the structure (for instance compactness, locality
of interactions and so on) are important to determine
the neutral mutation rate. However, it was argued that
the small number of folds occurring in natural pro-
teins (at most some thousands) could be the ones cor-
responding to the largest number of sequences in se-
quence space [39], so that structures characterized by
a large neutral set, even if they are not typical, could
be the most interesting ones from the biological point
of view.

3. The length of the sequences examined is short, so that
there are only two core residues. Considering more core
residues could impose more constraints on the evolu-
tion and reduce the rate of neutral evolution. It would
thus be interesting to make the same study for longer
sequences.

4. We did not represent biological activity in the present
protein model. This might be obtained by imposing
more constraints on the residues taking part to the
active site.

5. In our model of evolution we assume that the envi-
ronment remains fairly constant, so that the native
structure favored by natural selection does not change
throughout the evolution. This hypothesis is not un-
reasonable if the protein examined is an enzyme per-
forming some chemical activity, since the cells possess
a high homeostasis, i.e. they can maintain a stable
chemical-physical internal environment despite large
perturbations in the external environment. However,
it is quite likely that some large ecological and climatic
changes have been responsible for molecular substitu-
tions for which the neutral theory, and our model in
particular, do not apply [8].

6. We consider only point mutations, and not insertions
and deletions, which also play an important role in
evolution.

In our opinion, these limitations should not modify the
qualitative picture. The existence of neutral networks, the
variability of neutral mutation rates and the difficulty to
reach through point mutations very different structures
corresponding to stable proteins are features of our model
that appear to be reflected also in the evolution of real
proteins.
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